- Valentina Damerow, Bodo Manthey, Friedhelm Meyer auf der Heide, Harald Räcke, Christian Scheideler, Christian Sohler, Till Tantau:
Smoothed Analysis of Left-To-Right Maxima with Applications.
ACM Transactions on Algorithms, 8(3):Article No. 30, 2012.
Website anzeigen | Zusammenfassung anzeigen
A left-to-right maximum in a sequence of n numbers s1, …, sn is a number that is strictly larger than all preceding numbers. In this article we present a smoothed analysis of the number of left-to-right maxima in the presence of additive random noise. We show that for every sequence of n numbers si ? [0,1] that are perturbed by uniform noise from the interval [-?,?], the expected number of left-to-right maxima is ?(&sqrt;n/? + log n) for ?>1/n. For Gaussian noise with standard deviation ? we obtain a bound of O((log3/2 n)/? + log n).
We apply our results to the analysis of the smoothed height of binary search trees and the smoothed number of comparisons in the quicksort algorithm and prove bounds of ?(&sqrt;n/? + log n) and ?(n/?+1&sqrt;n/? + n log n), respectively, for uniform random noise from the interval [-?,?]. Our results can also be applied to bound the smoothed number of points on a convex hull of points in the two-dimensional plane and to smoothed motion complexity, a concept we describe in this article. We bound how often one needs to update a data structure storing the smallest axis-aligned box enclosing a set of points moving in d-dimensional space.
- Michael Elberfeld, Danny Segev, Colin R. Davidson, Dana Silverbush, Roded Sharan:
Approximation Algorithms for Orienting Mixed Graphs.
Theoretical Computer Science, 2012 (noch nicht erschienen).
PDF anzeigen | Website anzeigen | Zusammenfassung anzeigen
Graph orientation is a fundamental problem in graph theory that has recently arisen in the study of signaling-regulatory pathways in protein networks. Given a graph and a list of source–target vertex pairs, one wishes to assign directions to the edges so as to maximize the number of pairs that admit a directed source-to-target path. When the input graph is undirected, a sub-logarithmic approximation is known for this problem. However, the approximability of the biologically-relevant variant, in which the input graph has both directed and undirected edges, was left open. Here we give the first approximation algorithms to this problem. Our algorithms provide a sub-linear guarantee in the general case, and logarithmic guarantees for structured instances.
- Michael Elberfeld, Ilka Schnoor, Till Tantau:
Influence of Tree Topology Restrictions on the Complexity of Haplotyping with Missing Data.
Theoretical Computer Science, 432:38–51, 2012.
PDF anzeigen | Website anzeigen | Zusammenfassung anzeigen
Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately, when data entries are missing, which is often the case in laboratory data, the resulting formal problem IPPH, which stands for incomplete perfect phylogeny haplotyping, is NP-complete. Even radically simplified versions, such as the restriction to phylogenetic trees consisting of just two directed paths from a given root, are still NP-complete; but here, at least, a fixed-parameter algorithm is known. Such drastic and ad hoc simplifications turn out to be unnecessary to make IPPH tractable: we present the first theoretical analysis of a parametrized algorithm, which we develop in the course of the paper, that works for arbitrary instances of IPPH. This tractability result is optimal insofar as we prove IPPH to be NP-complete whenever any of the parameters we consider is not fixed, but part of the input.
- Michael Elberfeld, Till Tantau:
Phylogeny- and Parsimony-Based Haplotype Inference with Constraints.
Information and Computation, 213:33–47, 2012.
PDF anzeigen | Website anzeigen | Zusammenfassung anzeigen
Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely haplotypes based on genotype data. One fast computational haplotyping method is based on an evolutionary model where a perfect phylogenetic tree is sought that explains the observed data. An extension of this approach tries to incorporate prior knowledge in the form of a set of candidate haplotypes from which the right haplotypes must be chosen. The objective is to increase the accuracy of haplotyping methods, but it was conjectured that the resulting formal problem constrained perfect phylogeny haplotyping might be NP-complete. In the paper at hand we present a polynomial-time algorithm for it. Our algorithmic ideas also yield new fixed-parameter algorithms for related haplotyping problems based on the maximum parsimony assumption.
- Maciej Liskiewicz, Martin R. Schuster:
Improved Analysis of an Exact Algorithm for Cubic Graph TSP.
CoRR, (abs/1207.4694)2012.
Website anzeigen - Johannes Textor, Maciej Liskiewicz:
Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective.
CoRR, (abs/1202.3764)2012.
Website anzeigen
- Michael Elberfeld, Andreas Jakoby, Till Tantau:
Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth.
In Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012), Band 14 von Leibniz International Proceedings in Informatics (LIPIcs), S. 66-77.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2012.
PDF anzeigen | Website anzeigen | Zusammenfassung anzeigen
An algorithmic meta theorem for a logic and a class C of structures states that all problems ex- pressible in this logic can be solved efficiently for inputs from C. The prime example is Courcelle’s Theorem, which states that monadic second-order (mso) definable problems are linear-time solv- able on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state that mso-definable problems are (a) solvable by uniform constant-depth circuit families (AC0 for decision problems and TC0 for counting problems) when restricted to input structures of bounded tree depth and (b) solvable by uniform logarithmic-depth circuit families (NC1 for decision prob- lems and #NC1 for counting problems) when a tree decomposition of bounded width in term representation is part of the input. Applications of our theorems include a TC0-completeness proof for the unary version of integer linear programming with a fixed number of equations and extensions of a recent result that counting the number of accepting paths of a visible pushdown automaton lies in #NC1. Our main technical contributions are a new tree automata model for unordered, unranked, labeled trees; a method for representing the tree automata’s computations algebraically using convolution circuits; and a lemma on computing balanced width-3 tree de- compositions of trees in TC0, which encapsulates most of the technical difficulties surrounding earlier results connecting tree automata and NC1.
- Michael Elberfeld, Christoph Stockhusen, Till Tantau:
On the Space Complexity of Parameterized Problems.
In Proceedings of the 7th International Symposium on Parameterized and Exact Computation (IPEC 2012), Band 7535 von Lecture Notes in Computer Science, S. 206-217.
Springer,
2012.
Website anzeigen | Zusammenfassung anzeigen
Parameterized complexity theory measures the complexity of computational problems predominantly in terms of their parameterized time complexity. The purpose of the present paper is to demonstrate that the study of parameterized space complexity can give new insights into the complexity of well-studied parameterized problems like the feedback vertex set problem. We show that the undirected and the directed feedback vertex set problems have different parameterized space complexities, unless L = NL; which explains why the two problem variants seem to necessitate different algorithmic approaches even though their parameterized time complexity is the same. For a number of further natural parameterized problems, including the longest common subsequence problem and the acceptance problem for multi-head automata, we show that they lie in or are complete for different parameterized space classes; which explains why previous attempts at proving completeness of these problems for parameterized time classes have failed.
- Michael Elberfeld, Martin Grohe, Till Tantau:
Where First-Order and Monadic Second-Order Logic Coincide.
In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2012), S. 265-274.
IEEE Computer Society,
2012.
PDF anzeigen | Website anzeigen | Zusammenfassung anzeigen
We study on which classes of graphs first-order logic (FO) and monadic second-order logic (MSO) have the same expressive power. We show that for each class of graphs that is closed under taking subgraphs, FO and MSO have the same expressive power on the class if, and only if, it has bounded tree depth. Tree depth is a graph invariant that measures the similarity of a graph to a star in a similar way that tree width measures the similarity of a graph to a tree. For classes just closed under taking induced subgraphs, we show an analogous result for guarded second-order logic (GSO), the variant of MSO that not only allows quantification over vertex sets but also over edge sets. A key tool in our proof is a Feferman-Vaught-type theorem that is constructive and still works for unbounded partitions.
- M. B.:
Berechnungskomplexitäten von Varianten des Subset-Sum-Problems.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Till Tantau, Hans-Martin Teichert.
PDF anzeigen | Zusammenfassung anzeigen
In dieser Arbeit betrachten wir das Problem subsetsum, bei dem aus ei-
ner gegebenen Menge von natürlichen Zahlen eine Teilmenge bestimmt
werden soll, sodass die Elemente dieser Teilmenge in der Summe ei-
ne vorgegebene Zahl ergeben. Die Komplexität von subsetsum ist für
die Informatik interessant, denn aufgrund des generischen Aufbaus
von subsetsum lassen sich viele weitere Probleme darauf zurückfüh-
ren. In dieser Arbeit soll die Komplexität von mehreren Varianten von
subsetsum untersucht werden, denn obwohl fast alle Varianten des Pro-
blems in der üblichen binären Codierung NP-vollständig sind, haben
diese Probleme oft unterschiedliche Komplexitäten, wenn wir unäre
Kodierungen betrachten. In dieser Arbeit werden einige natürliche Va-
rianten dieses Problems diesbezüglich untersucht und entsprechende
Resultate präsentiert.
- M. B.:
Multimengen-Baumautomaten: Analyse und Implementierung.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Till Tantau, Martin Leucker.
- S. G.:
Eine Multicommodity Push-Relabel-Algorithmus und Anwendung für parametrisierte Graphen.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Rüdiger Reischuk, Maciej Liskiewicz.
- P. H.:
Turn Costs in Energy-Optimal Route Planning for Electric Vehicles.
Universität zu Lübeck, Institut für Softwaretechnik und Programmiersprachen,
2012.
Gutachter: Martin Leucker, Maciej Liskiewicz.
- C. K.:
Algorithmen und Datenstrukturen für Prioritätswarteschlangen auf partiellen Ordnungen.
Universität zu Lübeck, Institut für Softwaretechnik und Programmiersprachen,
2012.
Gutachter: Martin Leucker, Maciej Liskiewicz.
- I. K.:
Lösungsstrategien und semiautomatische Generierung von Testdatensätzen bei ACM-ICPC-artigen Graphproblemen.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Maciej Liskiewicz, Till Tantau.
- S. M.:
Implementation and Comparison of Algorithms for Constructing and Visualizing Phylogenetic Trees.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Till Tantau, Hans-Martin Teichert.
PDF anzeigen | Zusammenfassung anzeigen
TEX ist ein Textsatzsystem, das häufig für die Erstellung wissenschaftli-
cher Dokumente eingesetzt wird. Das TEX-Paket TikZ ermöglicht zusätz-
lich die Erzeugung von qualitativ hochwertigen Vektorgraphiken direkt in
einem TEX-Dokument. Das Ziel dieser Arbeit war es, die TikZ-Graph-Draw-
ing-Bibliothek so zu erweitern, dass die Berechnung und Visualisierung phy-
logenetischer Bäume ebenfalls möglich wird.
Phylogenetische Bäume sind Diagramme, die die Phylogenie einer Men-
ge an Taxa in einer baumartigen Struktur darstellt. Die Stammesgeschichte
kann z.B. durch die sogenannten distance-based methods (engl. distanzbasierte
Methoden) berechnet werden, wobei die Phylogenie anhand einer Distanz-
matrix abgeschätzt wird. Es gibt verschiedene distanzbasierte Ansätze, von
denen zwei in dieser Arbeit näher betrachtet werden: der UPGMA- und der
BME-Algorithmus. Während UPGMA eher einfach und dadurch auch leicht
zu implementieren ist, ist BME deutlich überlegen, wenn es um akkurate
Topologie, Zeitkomplexität und Einsetzbarkeit geht. Da die beiden Algo-
rithmen nicht nur die Topologie des Baumes, sondern auch dessen Kan-
tenlängen bestimmen, ist auch ein Algorithmus erforderlich, der mit dem
Zeichnen von Graphen mit festen Kantenlängen umgehen kann. Sowohl die
Algorithmen für die Berechnung phylogenetischer Bäume als auch die für
deren Zeichnung wurden in der Programmiersprache Lua implementiert, da
es LuaTEX ermöglicht, Lua-Code direkt in TEX einzubetten. Die Algorithmen
und ihre Implementierungen werden diskutiert und verglichen, wobei das
implementierte Modul für die Berechnung und Visualisierung einiger bei-
spielhafter phylogenetischer Bäume direkt in diesem Dokument angewandt
wird.
- M. S.:
Transformation von regulärer Linearzeit-Temporallogik zu Paritätsautomaten.
Universität zu Lübeck, Institut für Softwaretechnik und Programmiersprachen,
2012.
Gutachter: Martin Leucker, Till Tantau.
- B. W.:
Steganographie in Binärbildern.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Maciej Liskiewicz, Rüdiger Reischuk.
- F. W.:
Synchronisierungsmethoden zur Huffmankodierung.
Universität zu Lübeck, Institut für Theoretische Informatik,
2012.
Gutachter: Maciej Liskiewicz, Andreas Schrader.